Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 7849, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846519

RESUMEN

Bamboos, member of the family Poaceae, represent many interesting features with respect to their fast and extended vegetative growth, unusual, yet divergent flowering time across species, and impact of sudden, large scale flowering on forest ecology. However, not many studies have been conducted at the molecular level to characterize important genes that regulate vegetative and flowering habit in bamboo. In this study, two bamboo FD genes, BtFD1 and BtFD2, which are members of the florigen activation complex (FAC) have been identified by sequence and phylogenetic analyses. Sequence comparisons identified one important amino acid, which was located in the DNA-binding basic region and was altered between BtFD1 and BtFD2 (Ala146 of BtFD1 vs. Leu100 of BtFD2). Electrophoretic mobility shift assay revealed that this alteration had resulted into ten times higher binding efficiency of BtFD1 than BtFD2 to its target ACGT motif present at the promoter of the APETALA1 gene. Expression analyses in different tissues and seasons indicated the involvement of BtFD1 in flower and vegetative development, while BtFD2 was very lowly expressed throughout all the tissues and conditions studied. Finally, a tenfold increase of the AtAP1 transcript level by p35S::BtFD1 Arabidopsis plants compared to wild type confirms a positively regulatory role of BtFD1 towards flowering. However, constitutive expression of BtFD1 had led to dwarfisms and apparent reduction in the length of flowering stalk and numbers of flowers/plant, whereas no visible phenotype was observed for BtFD2 overexpression. This signifies that timely expression of BtFD1 may be critical to perform its programmed developmental role in planta.


Asunto(s)
Bambusa , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Proteínas de Plantas/genética , Sasa , Bambusa/genética , Bambusa/crecimiento & desarrollo , Sasa/genética , Sasa/crecimiento & desarrollo
2.
Proteins ; 88(12): 1660-1674, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32683714

RESUMEN

Allosteric communication is the basis of signaling and information transfer. Collective interactions between amino acid residues, which are spatially distributed in the three dimensional structure of a protein molecule, form the basis of allosteric network. While the construction of residue interaction graphs (RIG) is based on static crystal structures of proteins, it is important to extract information on protein dynamics to understand allostery. Therefore, quantitative analysis of RIG based on the framework of differential network (DN), is immensely helpful in identifying key amino acid residue interactions within such communication pathways. While the simultaneous availability of protein structures from two different states is essential for DN, there are additional challenges. Crystallographic artifacts like nonbiological dimeric arrangements within the crystal lattice automatically influence the construction and eventually the interpretation of RIG. Therefore, experimental validation of predictions from the analyses of RIG is naturally scarce in the literature. Herein, we study the photo sensor domain of the signaling photoreceptor transcription factor, aureochrome1, to understand light-driven signaling. We perform direct experiments to verify the predictions from RIG using the machinery of DN. However, the agreement leaves scope for improvement. We then discuss the notion of quaternary structure alignment to obtain a biologically meaningful dimer. Thence, we reconstruct the RIG and reanalyze the modified structure. Results of these reanalyses render far superior agreement with experiments. Therefore, this notion of addressing crystallographic biases provides a fresh yet general approach for reconciliation of theory and experiments. It is applicable beyond the present case to all signaling proteins in general.


Asunto(s)
Proteínas Algáceas/química , Proteínas Algáceas/metabolismo , Fototransducción , Luz , Oxígeno/química , Células Fotorreceptoras/metabolismo , Estramenopilos/metabolismo , Regulación Alostérica , Cristalografía por Rayos X , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas
3.
Pharmacol Rep ; 68(1): 144-54, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26721366

RESUMEN

BACKGROUND: The thiazolidinedione (TZD) class of peroxisome proliferator-activated receptor gamma (PPAR-γ) ligands are known for their ability to induce adipocyte differentiation, to increase insulin sensitivity including anticancer properties. But, whether or not upstream events like MAPK activation or PPAR-γ signaling are involved or associated with this anticancer activity is not well understood in breast cancer cells. The role of MAPK and PPAR pathways during the pioglitazone (Pio) induced PPAR-γ independent anticancer activity in MCF7 cells has been focused here. METHODS: The anticancer activity of Pio has been investigated in breast cancer cells in vitro. Anti-tumor effects were assessed by alamar blue assay, Western blot analysis, cell cycle analysis, and annexin V-FITC/PI binding assay by flow cytometry, Hoechst staining and luciferase assay. RESULTS: The anticancer activity of Pio is found to be correlating with the up regulation of CDKIs (p21/p27) and down regulation of CDK-4. This study demonstrates that the induction of CDKIs by Pio is due to the sustained activation of MAPK. The Pio-mediated activation of MAPK is transmitted to activate ELK-1 and the related anti-proliferation is blocked by MEK inhibitor (PD-184352). CONCLUSIONS: Pio suppresses the proliferation of MCF7 cells, at least partly by a PPAR-γ-independent mechanism involving the induction of p21 which in turn requires sustained activation of MAPK. These findings implicate the utility of Pio in the treatment of PPAR positive or negative human cancers and the development of a new class of compounds to enhance the effectiveness of Pio.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/metabolismo , Hipoglucemiantes/farmacología , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Tiazolidinedionas/farmacología , Animales , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Femenino , Células HeLa , Humanos , Hipoglucemiantes/uso terapéutico , Células MCF-7 , Ratones , Ratones Desnudos , Pioglitazona , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Tiazolidinedionas/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...